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CHAPTER 1. INTRODUCTION 

Humankind is becoming increasingly aware of environmental issues. At the same 

time, ironic as it is, humau beings are demanding higher comfort levels at the work­

place, home and in modes of transit. The car has to cool down or warm up to one's 

comfort in the shortest time possible. Hardly a day passes without hearing about 

the ergonomic design of some car. Ergonomics is the science of maximizing comfort 

in an affordable manner. Yet ergonomics fails to economize the natural resources 

on earth. Industries are beginning to take interest in environmental concerns. This 

includes systems that are fuel efficient. The trend in the future will be to maximize 

both fuel efficiency and comfort. There definitely must be trade offs. A built-in fault 

diagnostics system is essential to maintain the fuel effeciency and the comfort levels 

that the system was designed for. In this dissertation, a real life system is modeled 

and a fault classification approach is devised. The techniques are kept as simple as 

possible, in an attempt to make it practical. In many cases, it is the simplest of 

techniques that produce the best results. 

Quality and reliability seem to be the key words in industry. Neither can be 

guaranteed for a system that has no fully automated fault diagnostics. This research 

is aimed at the design of fault diagnostics for any general system that does a lot 

of steady state operation and, is a step in the direction of a new generation of pro­
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cess control systems. Modifications, if necessary, can be made to adapt to highly 

dynamic systems. A Heating, Ventilation and Air-conditioning (HVAC) system is a 

good candidate for this research. The state-of-the-art HVAC systems do not have 

any built-in fault diagnostics, though there is a lot of on-going research in this area. 

Further, there was access to the Charles L. Schwab HVAC test loop in the Mechan­

ical Engineering Department at Iowa State University. Most of the work done in 

improvement of HVAC systems has focused on system optimization and not as much 

on Fault Detection and Identificaiton (FDI) (Usoro and Schick 1985). Optimization 

is process specific. An optimized HVAC system could be optimized with respect to 

energy efficiency and human comfort. Faults in a system could lead to extreme non-

optimality! Thus ability to detect faults, localize the faults, and rectify the faults are 

essential components of a truly optimal system. 

Degradation in the components of the system could result in increased energy 

consumption and discomfort to the clients. The degradation of components could 

lead to their breakdown or the ultimate breakdown of the entire system. The fault 

diagnosis system also informs the controller about abnormal changes in the system, so 

that the system can adapt to its current conditions. This would ensure total quality 

control for the system. 

A working model of the system is essential to detect system abnormalities. A 

more than tolerable deviation of the system output variables from those predicted 

by the model is a fault indication. A popular approach to fault detection is using a 

mathematical process model (Wilsky 1976 and Isermann 1984). The process variables 

axe related to process coefficients in the mathematical model, making it possible to 

locate the faults in the system (Patton and Clark 1989). Many of the process control 
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systems one encounters axe highly complex and nonlinear, and is often difficult to 

come up with a reasonably accurate model. 

Neural networks are being increasingly used in building process models for com­

plex systems. The process of building working models is also termed system identi­

fication. The ability of the neural networks to learn the nature of the system, based 

on a large training set of input and output variables, makes it possible to develop 

neural network models of complex systems with little knowledge of the actual sys­

tem. Further it has been proved that a two layer neural network (one hidden layer) 

can approximate any arbitrary non-linear fimction (Cybenko 1989). But depending 

on the complexity of the system, the hidden layer of the neural network could be 

infinitely large. To circumvent this, one can add more layers with fewer nodes. Ha-

jnal (1987) proved that problems that required an exponential number of nodes in 

a two-layer network can be implemented with a polynomial number of nodes in a 

three layer network. It is yet to be proved whether the same rule applies to a three 

layer network (Hush and Home 1993). There are no hard and fast rules to determine 

the exact number of layers or the number of nodes per layer. Thus converging to a 

satisfactory neural network model of the system may involve trial and error. This 

could be time consuming, and is one of the motivations for the proposed network in 

Chapter 4. 

There are many fault detection schemes described in the literature and a brief 

review is given later in this chapter. A fault diagnostic approach based on deviation 

from the neural network model, common sense rules, hardware redundancy, and fuzzy 

logic is proposed and implemented in this dissertation. 

The research involves both experimental and theoretical work. The ultimate 
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objective is to develop a reliable, yet feasible fault diagnostics in a real system. In 

the next section, the HVAC system is described, followed by a review of existing 

neural network and fault diagnostic techniques. 

Charles L. Schwab HVAC Test Loop 

The HVAC system used for the research was the Charles L. Schwab test loop 

in the Mechanical Engineering Department at Iowa State University. A simplified 

schematic of the pait of the loop that is relevant to the research is shown in Figure 

1.1. This is a single zone air handling unit. The main components of the system 

are hot water to air heat exchanger, steam to hot water exchanger, supply fan, water 

pump, air ducts, dampers that allow mixing of air, and numerous sensors. Thus, there 

are a number of components that are potential candidates for a fault classification 

scheme. 

In the proposed experimental set up, the air flow loop is run as a closed loop. 

This implies that no air enters or leaves the loop. The air handling unit consists of a 

filter, hot water coil, and a variable feed supply fan. The hot water flowing through 

the hot water to air exchanger (HWX) heats the incoming air. The heated air is 

then driven through the loop by the supply fan. The warm air then flows over a 

chilled water coil. The chilled water flow can be adjusted manually. This is used to 

simulate different load conditions in the loop. The cool air then returns to the HWX. 

Normally, the air coming out of HWX is maintained at a set point. External to this 

loop is a steam to water heat exchanger (SWHX). The hot water that flows into 

HWX is heated in the SWHX. Steam that flows into the SWHX can be controlled 

using a pneumatic valve. The steam pressure is maintained at a steady level and is 
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Figure 1.1: Simplified schematic of HVAC system. 

generated at the Iowa State Physical Plant. The hot water flow through the HWX 

can be controlled manually. 

The controlled variable for the system is the temperature of the heated air on 

the downside of the supply fan. The objective is to maintain a certain set point tem­

perature for this controlled variable. The control variables are the fan speed, water 

flow rate and steam flow. These variables are adjusted, taking into consideration the 

temperature of the incoming air, to obtain the set point. The variables are adjusted 

manually, or by the system controller. A data acquisition system provides the air flow 

rate, water flow rate through HWX, input and output temperatures to HWX, the 

incoming air temperature, and the conditioned air temperature readings, sampled at 

1 Hz. 
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Neural Networks and Modeling 

Neural networks have proven the ability to implement Boolean logic funtions 

(Morgan and Scofield 1991 and Muroga 1971), to partition the pattern space for 

classificaton problems (Lippmann 1981 and Makhoul et al. 1989), and to imple­

ment non-linear transformations for functional approximation probelms (Cybenko 

1989). One of the more popular networks is the Multilayer Perceptron (MLP) (Hush 

and Home 1993). This neural network is a system which has layers of nodes that 

are interconnected between the inputs and the outputs. The interconnections have 

weights associated with them. The weights are chosen during the training process 

(back-propagation). The back-propagation training algorithm is an iterative gradient 

algorithm designed to minimize the mean square error between the actual output of 

the multilayer perceptron and the desired output (Lippmann 1987). The network is 

said to converge when the error has been minimized to within tolerable limits for a 

training set consisting of input-output pairs. Applications of back-propagation based 

MLPs include speech synthesis and recognition, visual pattern recognition, analysis 

of sonar signals, defense applications, medical diagnosis, and learning in control sys­

tems. Applications specific to control systems include controller modeling, process 

identification and modeling, and inverse process modeling (Samad 1991). 

Neural networks have universal approximation capabilities in the sense that they 

can be used to model arbitrarily complex, highly nonlinear, multidimensional func­

tions (Hornik et al. 1989). This makes neural networks an attractive choice for 

modeling highly nonlinear complex systems. Further, not much knowledge of the ac­

tual system is required. All the network needs is sufficient numbers of input/output 

patterns that cover the domain of interest. The objective of the system model is 
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actual system 

Figure 1.2: System identification. 

to duplicate the output of the system when working under normal conditions. The 

process of system modeling or identification is shown in Figure 1.2. 

There are two classes of neural networks that could be used for system modeling. 

i) Static neural networks: A static neural network is one in which the output is a 

function of the current input only. The node equations are memoryless. The MLP 

is the most widely used static network. The static neural network is capable of 

approximating any functional relationship between input "x" and output "y" given 

by 

y { k )  =  F { x { k ) ) .  

The static network can be used to model the steady state characteristics of a system. 

ii) Dynamic neural networks: Dynamic neural networks or recurrent neural networks 

are systems with memory. Their node equations are often described by differen­

tial or difference equations. The dynamic neural network is theoretically capable of 

approximating any functional relationship given by 

y { k )  =  F { x { k ) , x { k  -  l ) , x { k  -  2), . . . , x { k  -  p ) , y { k  -  l ) , y { k  -  2),..., y { k  -  q ) ) .  
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The dynamic network can be used to model the steady state as well as the transient 

characteristics of dynamic systems. All the reported work in modeling dynamical 

systems are mainly theoretical, or on simple systems. Dynamic modeling of systems 

holds great promise. 

Bhat et al. (1990) discusses the use of neural nets for modeling nonlinear chemi­

cal systems. Their paper discusses the results on steady state modeling of a nonlinear 

chemical reactor, and the dynamic model that predicts the dynamic response of the 

pH in a tank into which flows sodium hydroxide and acetic acid. For their steady 

state modeling a simple chemical reaction was used. The underlying reactor kinet­

ics are assumed to be unknown. The network had four inputs and three outputs. 

The number of hidden layers was arbitrarily set at nine. It took presentation of 

10,000 input/output patterns before convergence occurred. The MLP network that 

was trained using backpropagation did an excellent job in learning the governing 

chemical reaction. For the dynamic modeling example, the authors studied the dy­

namic response of pH in a stirred tank reactor. Two input streams, one containing 

sodium hydroxide and the other acetic acid, flow in at rates Fi and ^2- To model 

the pH response a back-propagation MLP net was used. Of the flow rates Fi was 

held constant. At any given time the inputs to the net were current and past four 

pH and F2 values, and the future five F2 values. The pH was predicted one to five 

steps into the future. They had a data base of pH and flow rates. They repeatedly 

submitted the network to the contents of the network until it converged. The input 

and output layers had fifteen and five neurons repectively. The only hidden layer 

had five nodes, stating thereby the simplicity of the dynamic system. The net gave 

excellent predictions on convergence and is reported to have performed better than 
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an ARMA model. 

Nguyen and Widrow (1990) show in their paper how a neural network can learn 

on its own accord to control a nonlinear dynamic system. An emulator, which is a 

multilayered neural network, learns to identify the system characteristics. Basically, 

the emulator is a neural network model of the dynamic system. Another neural 

network then learns to control the emulator. This self-trained controller is then 

trained to control the actual dynamic system. The system is the backing of a trailer 

truck to a loading dock. 

For the plant identification part, it is assumed that all the states of the plant 

are directly observable. A neural network with as many outputs as there are states, 

and as many inputs as there are states plus plant inputs, is created. They used some 

empirical rules to determine the number of layers and the number of nodes in each 

layer. The network is trained to predict the succeeding states, given the current states 

and the steering signal (plant input). The actual value of the next state is used to 

train the neural network. It took about 20,000 back-ups of the truck before the net 

was trained. The emulation and control worked well on a simulated truck. In this 

technique, one has to know the exact state trajectory, and the network is basically 

trained to follow it. Further, the states have to be completely observable. 

Narendara and Parthasarathy (1990) discuss the identification and control of 

dynamical systems using neural networks. They defined four models that can describe 

the various nonlinear models. In the first model, the output at any instant is a linear 

function of the weighted sum of past output values and a nonlinear function of the 

present and past input functions. In the second model, the output is a nonlinear 

function of the past output values and a linear fuction of the weighted sum of present 
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and past input values. In the third model, the output function is the sum of two 

nonlinear fuctions. The first sum is a nonlinear function of all the past output values. 

The second sum is a nonlinear function of all the present and past input values. In 

the fourth model, the output is a nonlinear function of the past output values, present 

and past output values. These models can be of any order, depending on the system 

being modeled. The authors also give the neural network structures to identify the 

four different models. 

The authors identified plants known to be governed by certain difference equa­

tions, though the exact nature of the nonlinearity was unknown. For simple difference 

equations, it took as many as 100,000 time steps to identify the function. Theroeti-

cally, it sounds exciting. Practically, one is not working with simple dynamic systems, 

and the model that pertains to the system of interest may be unknown. Thus, when 

modeling a dynamic system using neural networks, one is adding to the list of un­

certainties that already exist when working with neural networks. The uncertainties 

referred to are those associated with number of layers, number of nodes per layer, 

learning rate of neural network (which for back-propagation is anywhere from 0.1 to 

0.9), number of training samples and finally whether the neural network is going to 

converge. The proposed network is easier to train, and there are no empirical rules 

to depend on. This network will be discussed in Chapter 3. Further, there has been 

no mention of modeling of HVAC systems using neural networks, to the best of the 

author's knowledge. 
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Fault Diagnostics 

"Total quality control" is an extremely common phrase in the industry. Indus­

tries are under pressure to come up with products that are reliable, unsurpassed in 

quality, safe, and by all means economical to the user. To guarantee all this there 

must be some means of supervising the process. The process supervisor should be 

able to detect faults, evaluate the extent of the fault, raise an alarm if necessary and 

perform fault diagnosis (localize and estimate the nature of fault(s) and inform the 

user and the sytem controller). If this can be done successfully, it would permit lives 

and machinery to be saved, the machine to be run at an optimum, and increased 

longevity of the machine. 

Kao (1985) showed that the sensor errors alone in the air-handling unit of an 

HVAC system increase the annual energy requirements up to fifty percent. In an 

HVAC system, in addition to the sensors, fans, pumps, pneumatic valves, air ducts, 

dampers and heat converters are some of the parts that could develop defects. In 

a world that is becoming environmentally conscious, such wastage of energy from 

malfunctioning of parts will not go unnoticed much longer. In addition to energy 

losses, HVAC system defects could lead to human discomfort and the breakdown 

of the machine or machine parts. Thus a reliable, practical and economic fault 

diagnostic system is a must! 

Willsky (1976) surveyed a number of methods for the detection of abrupt changes 

in stochastic dynamical systems. The author concentrates on the design of failure 

sensitive filters for the detection of a wide variety of changes in linear time-invariant 

systems. A reasonably accurate model of the system is essential. Iserman (1984) 

illustrates with the aid of process models as well as estimation and decision methods. 
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that it is possible to monitor non-measurable variables such as process states, process 

parameters and characteristic quantities. The technique is to detect, locate and 

estimate faults with the help of mathematical models and measurable input and 

output quantities. Limit and trend (derivative) checking of measurable quantities can 

be performed to monitor changes in the process. Spectral analysis could highlight 

fault signatures. If process faults are indicated by internal non-measurable process 

state variables, it might be possible to estimate these state variables from measurable 

signals using a known process model. Once again, there is the need for a working 

mathematical model of the system. 

There has been an abundance of research geared towards fault diagnostics in 

HVAC systems. The approaches include steady-state input/output relationships, 

energy balances, and dynamic system models. But according to sources at Johnson 

Contois, a pioneer in the HVAC and controls industry, all of these look good on paper. 

For an HVAC industry, where little has changed in the design for the HVAC systems 

or the controls in a few decades, it will take an economical, easy to implement, and 

reliable fault diagnostic system to overcome their inertia. Some of the HVAC fault 

diagnostics related work is summerized below. 

Haberl and Claridge (1987) developed relationships between environmental, build­

ing load and occupany variables as inputs, and fuel consumption as output. In­

put/output correlations were compared with the reference period of normal operation 

to detect problems. 

Anderson et al. (1989) also added statistical analysis and a rule-based approach 

to detect faults. The statistical analysis included redundancy checks for sensor fail­

ures, and checks for differnces between measurements and predictions. Predictions 
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were made using historical data. If the differences were greater than a tolerable limit, 

it was considered as the indication of a fault. 

Liu and Kelly (1989) compared actual performance with an optimum calculated 

by simulation for specific outside and inside zone temperatures and checked flow 

rates, supply air temperature, temperature of the mixed return and outdoor air, and 

proper sequencing of valves and acutators. Pape et al. (1991) used input/ouput 

relationships involving electric power. They developed an optimal control strategy 

that yields the optimal set of control variables that minimizes power consumption 

at any time. The power consumption of the entire HVAC system is represented by 

a quadratic relation for the total power in terms of the control variables, loads, and 

ambient conditions. Any deviation from optimal power consumption is the indication 

of faults in the system. 

Iserman (1989) used dynamic models and parameter estimation for diagnosing 

faults in a pump and a heat exchanger. The nonlinear system model for the pump had 

nine process coefficients and deviations in these coefficients were related to nineteen 

different faults. This method requires extensive amounts of data, high sampling rates 

and is not practical at a system level. 

The proposed research is based on a steady state neural network model of the sys­

tem. Sensor redundancy, isolation of defects using the model, and fault classification 

using fuzzy neural networks, will be combined to form the proposed fault detection 

scheme. Steady state fault detection can detect many of the faults in HVAC sys­

tems (Norford 1992). Faults internal to the motor and pumps might need vibrational 

analysis, but they are less likely to fail than other parts. 
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Experimental Work 

The experimental part of this research was extremely time consuming and to a 

great extent, frustrating. But that is to be expected when one works with real-life 

systems. One has trouble duplicating the same results, however hard one tries to 

duplicated all of the conditions. Further, the system takes almost forty five minutes 

to "settle down", and the reading can be taken only after it reaches that equilibrium. 

This means, it takes that long to take a single reading. It took nearly six months 

of operating the system before it was possible to get the system tailored to operate 

in the manner necessary for collecting experimental data. The supply fan can be 

operated at several differnt speeds. The air flow rate is dependent on the fan speed. 

But the fan does not maintain a steady speed. Thus, a strobe meter was used to 

measure the exact fan speed. Further, it is almost impossible to have the dampers, 

that control the air flow in the duct, twice in the same exact position. To get around 

this, the decision was made to have the system work in a closed loop. Thus, one 

does not have to worry about the dampers. The steam pressure, controlled by the 

physical plant, was never steady. Steam could be trapped in the hot water pipe, 

thereby affecting the flow rate and heat transfer. This steam had to be released on 

a regular basis using escape valves. There is a world of difference between the real 

system and simulated models. 

The experimental work involved collecting data for all possible realizations. 

These include numerous combinations. The input variables to the system are in­

let air temperature, fan speed, steam flow, the inlet water temperature to the hot 

water to air exchanger, and the water flow rate. The output variables are the outlet 

air temperature and the outlet water temperature. The control variables are the fan 
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speed, water flow, and steam flow. The temperature of the out flowing air stream 

is the only controlled variable. The ranges for the operation of fan speed, air tem­

perature, water flow rate, and steam flow rate have been selected. Readings of the 

outlet air temperature for all possible variations and combinations of the above men­

tioned variables were taken. In addition to these five readings, the corresponding air 

flow rates, and inlet and outlet water temperatures are also recorded. Once all the 

readings were taken, different fault situations were introduced, and corresponding 

readings recorded. An example of a fault scenario could be change in fan speed from 

its set point, which could be easily realized. 

A good model is essential for a fault detection scheme. For this reason, this 

research is mainly focussed on developing a steady state model of the HVAC system. 

A new network is used to model the system. This network adheres to the simplicity 

constraints. The model sounds the alarm in case of any system discrepancies. A 

fuzzy neural approach is used to identify the faulty component. Chapter 2 analyses 

the conventional neural networks, in light of their limitations. Chapter 3 discusses 

picecewise polynomial approximation. Chapter 4 introduces the new network, and 

illustrates the modeling results. Chapter 5 discusses fuzzy neural techniques, and 

their application to fault classification in HVAC systems. Chapter 6 includes a brief 

summary of the research achievements, and suggestions for future research. 
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CHAPTER 2. NEURAL NETWORKS AND PROPOSED 

NETWORKS 

Neural networks are parallel interconnections of neurons. They consist of several 

layers, with varying number of neurons in each layer. Each neuron, in all but the first 

layer, is usually connected to all the neurons in the preceding and succeeding layers. 

Weights associated with the interconnections are assigned during the neural network 

training phase. The neurons are assigned activation functions that could be linear, 

sigmoidal, gaussian, or any other function the user assigns. The input to each neuron 

is the sum of neuron outputs from the preceding layer, multiplied by the respective 

connection weights. The output of each neuron depends on the activation function. 

Figure 2.1 is the schematic of a three layer Multilayer Perceptron (MLP). MLPs are 

the most widely used neural networks. The first and last layers are referred to as 

input and output layers respectively. All the other layers are hidden layers. The 

network in Figure 2.1 has one hidden layer. The input layer neurons have unity gain 

activation functions. 

Neural network applications can be broadly classifed into pattern recognition 

and functional approximation. For both these cases, the neural network is trained 

to map given input variables to certain output variables. The user decides on the 

number of layers, and the number of neurons per layer by trial and error. The 
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Figure 2.1: Three layer MLP. 

number of neurons in the input and output layers depends on the number of input 

and output variables, respectively. More layers give the network greater freedom. 

The network becomes more powerful with the increase in the number of neurons per 

layer. The network size is usually picked by trial and error. It is also left to the user 

to decide the activation functions for the neurons in different layers. For functional 

approximation problems, the activation functions of the output layer neurons are 

normally chosen to be Hnear. The user is once again at a loss, when it comes to 

selecting the interconnection weights. The common approach is to set the weights 

to small random numbers. The parameters that uniquely specify a neural network 

model are the number of layers, number of neurons per layer, and the interconnection 

weights. 
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After picking an arbitrary set of parameters for the neural network, the network 

is ready for the training phcise. The input variables are submitted to the network 

and the network output obtained. This output is compared with the expected ouput 

called the target vector, and the error vector is computed. The error vector is used 

to adjust the interconnection weights in an iterative process called backpropagation. 

In this gradient descent technique, the weights are adjusted so as to minimize the 

sum squared error between the network output and the target vector for all the 

input/output pairs. The weights are adjusted in the direction of steepest descent 

with respect to the error. The weight adjustments are proportional to the weights' 

effect on the sum squared error. The network is said to be trained, when the sum 

squared error drops below a threshold value. This network can be used to generate 

ouput vectors when presented with input vectors. 

Training a MLP 

The output of the jth neuron in layer / + 1 is given by 

yf = I- (2-1) 

Here N  is the number of neurons in layer /, / is the activation function of jth neuron 

in layer /+1, loj • is the weight of interconnection from the ith neuron in layer I to the 

jth neuron in layer / + 1, and Cj is the bias or threshold of the the jth neuron in layer 

I. The biases facilitate better representation of input-output relationship. Given any 

input vector, the output vector of the network is obtained by stepping through the 

network layer by layer. The output of any neuron is obtained using Equation 2.1. 
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Training stages 

All the interconnection weights are set to small random numbers in the range 

[-1,1]. The number of layers and the number of nodes are to some extent picked 

arbitrarily. In case the network fails to converge, the user picks a different network 

architecture. The network is said to converge when the sum squared error over all the 

input/output training pairs drops below the user picked threshold level. The input 

to the jth neuron in layer / -f 1 is given by 

= E v K j  -  (2-2) 
i = l  

Assuming sigmoidal activation function for all the neurons, the output of jth neuron 

in the I + 1 layer (not the input layer) is given by 

(2-3) 

l + e i 

For nodes in the input layer (/ =1), the output is given by 

y ]  = (2-4) 

where xj is the jth component of the input vector. The output of the neurons in 

the second layer are obtained using Equation 2.1. The outputs of the neurons in the 

higher layers are calculated sequentially, until the the output of the neurons in the 

output layer {L) is obtained. This is the ouput of the network for the initial set of 

weights. 

The least mean square error of the network for all input/output cases is calcu­

lated using (Pal 1992) 

^(w) = E (2.5) 

^ 3 
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where ?/f'„-(w) is is the output of jth neuron in the output layer for input-output 

case c, and j is the target output vector for the jth neuron for input-output case 

c. Here w is the current weight vector. Thus, the error is a function of the weight 

vector. The objective is to find the weights responsible for the error and adjust them 

in order to minimize the error. The gradient descent method is one of the popular 

techniques used to adjust the weights. 

In the gradient descent method, one starts with a random weight vector. Each 

weight in the vector is updated to 

w \  j { k )  =  w \  - { k  - 1) -f (2.6) 

where 

Awl A k )  =  -e—  h aAwl A k  - 1) - d e c .wl A k  - 1). (2.7) 

In Equation 2.7, the positive learning rate e controls the descent in the error space, dec 

is the decay coefficient, 0 < a < 1 is the momentum constant, and k is the iteration 

number. The decay coefficeint is used to remove weights that do not play any role in 

error reduction. The learning rate controls the speed at which the network converges 

to the desired optimal solution. The momentum rate, if appropriately chosen, reduces 

the possibility of the network getting stuck in local minima. For any given weight 

vector, the error is calculated using Equation 2.5. The weights are updated using 

Equation 2.7. The error is once again calculated for the new set of weights. This 

process is continued until the error drops below the user picked value, when the 

network is said to converge. The partial derivatives in this equation are calculated 

using the popular error back propagation method (Hush and Home 1993). It may 

take many passes of the input data before the network converges. 
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Drawbacks of Neural Networks 

There are many practical concerns when working with neural networks. The 

biggest concern is choosing the network size. For a given problem, one does not know 

the optimum size for the neural network. This refers to the number of layers and 

the number of neurons per layer. Choosing the network size is critical. Increasing 

the number of neurons per layer could result in overfitting. In this situation, the 

training points are well fit, but there exist oscillations between training points. On 

the other hand, if the number of neurons are too few, it could result in underfitting. In 

one approach, one starts with the smallest possible network, and gradually increases 

the size until the performance levels off. Each network would be trained separately. 

Another approach is to start with a large network, and then destroy weights and 

nodes that do not contribute, using a pruning technique (Hush and Home 1993). 

These techniques are extremely time consuming and may never produce the optimum 

network. 

Another major concern is the length of the training process, and the size of the 

training input/output set. The training set consists of all the input/output numerical 

pairs that are used to train the network. Normally, the network is trained until con­

vergence. This happens when the error drops below a threshold value. The training 

duration, and the training set size depend on the complexity of the function being 

approximated. The convergence can be hastened by picking the right learning rate. 

A lucky guess is the best way of picking the right learning rate. The backpropagation 

is a gradient search algorithm , that could get trapped in local minima. The mo­

mentum coefficient could reduce the chances of the network getting trapped in local 

minima. But once again the optimum momentum rate is in the range [0,1]. With all 
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these aids, the convergence of the network is not always guaranteed. 

The function being approximated do not appear to have any bearing on the 

weights of the artificial neural network. For this recison, the weights are initially set 

to small random numbers. The final weight vector depends on the initial set. Training 

would be a lot faster if the initial weights are set closer to the actual weights. But 

there are no rules for deciding the weights, that have strong theoretical backing. 

In attempts to hasten the training process, the backpropagation algorithm is 

steadily becoming more complex. A variety of parameters, that can take a wide range 

of values, have to be picked by the user. This adds to the long list of uncertainties 

associated with training the network. Considering the amount of a learning the 

human brain does every day, the logical explanation is that the learning process has 

to be simplistic. It has remained elusive so far. To shed more light to this discussion, 

the operation of the MLP is analyzed in the following section. 

Analyzing the MLP 

Neural networks attempt to mimic the human brain. But none among the nu­

merous networks that have become popular in the last decade, come anywhere close 

to emulating the human brain. Researchers have accepted the limitations of neu­

ral networks, and are content with exploiting the numerous capabilities of neural 

networks. The MLP is analyzed to provide the motivation for the proposed network. 

Figure 2.2 illustrates a single input/single output neuron. The activation func­

tion is sigmoidal and the output of the neuron is given by 
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Figure 2.2: Single input perceptron. 

^  ~  i+e- (^F-c) '  

where c is the threshold, and is the weight. Figure 2.3 gives the plot of output 

versus input for i = 1. The threshold and the weight determines how much the 

f u n c t i o n  i s  s h i f t e d  i n  t h e  x - d i r e c t i o n .  F i g u r e  2 . 4  s h o w s  t h e  o u t p u t  f o r  6  =  2 .  H e r e  b  

is a constant that stretches the sigmoid function. 

It has been proved that a neural network with one hidden layer can approximate 

any arbitrary non-linear function. In functional approximation applications, the neu­

rons of the hidden and output layers have non-linear and linear activation functions 

respectively. Figure 2.5 illustrates a typical neural network for a single input/single 

output system. There are N neurons in the hidden layer. The activation functions 

for the hidden layer are sigmoidal and are given by Equation 2.3. The output of this 

network is given by 

y  = ai / l (a ; )  +  a2/2(^ ' )  +  • •  •  +  (2-9)  

Here is the connection weight from the ith neuron in the hidden layer to the output 
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Figure 2.3: Plot of output versus input for b=l. 
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Figure 2.4: Plot of output versus input for b =2. 
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f H (X) 

Figure 2.5: A typical functional approximation type MLP. 

neuron. Also 

~ 1 + 

where is the weight of the connection from the input neuron to the ith neuron in 

the hidden layer, and is the bias of the ith neuron in the hidden layer. Thus the 

output is a linear combination of the functions fi{x), /2(a:), and fj^{x). From 

Figure 2.3, it is clear that /j(x) is a sigmoid function centered at a; = The the 

output is a linear combination of sigmoidal functions shifted to different abscissas 

in the input domain. The sigmoidal functions can be considered as basis functions, 

with infinite support. Thus this MLP performs piecewise sigmoidal interpolation, 

with sigmoidal functions acting as basis functions. 
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Artificial Neural Networks versus Biological Networks 

Artificial neural networks are far from emulating their biological counterparts. 

Equation 2.9 illustrates in a simple fashion the neural network philosophy. One could 

visualize the neural network operation, as trying to fit shifted and stretched sigmoidal 

functions in a smooth fashion to the functional surface. In Figure 2.6 an unknown 

function that is approximated using neural netwoks is shown(Hush and Home 1993). 

The final network is also shown in the figure. By trial and error, the network con­

verged to a two layer network with two nodes in the hidden layer. This is obvious 

from visual examination of the function. Hush and Home (1993) also model the same 

function using a neural network with gaussian activation functions. It took a network 

with five nodes in the hidden layer and gaussian activation functions to approximate 

the same function. Thus, it clearly indicates that choosing the right activation func­

tion can simplify the network. Further, it illustrates how neural networks work. The 

network is trying to fit functions to the domain of interest. The higher the com­

plexity, the more the number of nodes in the hidden layer. In the example shown in 

Figure 2.6, it took two sigmoidal functions and hence the two nodes in the hidden 

layer. 

In the MLPs, generally all the nodes in the hidden layer have the same activation 

function. This keeps the learning process as simple as possible. The sigmoidal and the 

radial basis functions are among the most popular activation functions. An analogy 

is trying to unscrew nuts in varying sizes and shapes with sockets of different sizes, 

but of a single shape. The task would be so much easier if one had the socket of the 

right shape and size. Likewise, rather than limiting the network to a certain kind of 

function, it definitely can approximate better if it has a few functions to choose from. 
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y = f(x)  

input(x) ouput(y) 

Figure 2.6: Approximated function and the corresponding neural network 
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During the training process, there do not exist any rules that help the user to pick 

the size of the network, and the weights of the interconnections. The neural network 

has no knowledge of the function that it is trying to approximate. It could be argued 

that the lack of knowledge and choice of activation functions are two of the striking 

differences between the artificial and biologstaiv-aetworks. 

A blindfolded person, equipped with sockets of all sizes but a single shape, trying 

to unsrew a nut of unknown size and shape, offers a fitting analogy to the artificial 

neural network learning process. Being constrained to a certain type of activation 

function and lack of any information regarding the function of interest, explains to a 

great extent the numerous iterations during the training process. Like the blindfolded 

person, the only way out is through trial and error. 

How does the human cognitive mechanism work? Here is a suggestion that 

compares the learning of President Clinton's face by a human brain and an artificial 

neural network. The human being knows that it is the face of a caucasian male. 

Further, there probably are functions defined for human faces based on race. Now all 

the learning mechanism has to do is to fine tune the facial parameters to that of Mr. 

Clinton's. A neural network, on the other hand, does not even know what it has been 

presented with. This is one of the reasons why the network could take forever and 

ultimately fail to converge. Thus, for an artificial neural network to better emulate 

human performance, it should be provided with the nature of the function being 

approximated. The functions that could be associated with human faces could be 

piecewise polynomial functions (splines). 
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Proposed Network 

Figure 2.7 gives the same function that was approximated in Figure 2.6. Here, 

the function is approximated by four straight lines. The domain of the input variable 

has been divided into four regions. This is made possible by picking five break points 

(xQ, X2i ®3, and are the break points). The break points are picked such that 

the interval defined by any consecutive break points can be approximated by a linear 

function. In Figure 2.8 is shown, the corresponding network that approximated the 

function. The network has four neurons corresponding to each one of the regions. 

Depending on the input range, the input selector switch directs the input to the right 

neuron. This switch also connects just this neuron to the output. The activation 

function of each neuron is linear and is given by, 

y^wix + ci i = l,2, ...,n. (2.11) 

Here 'n' is the number of regions, is the connection weight, and 'cj' is the thresh­

old. The connection weight is the slope of the region the particular neuron represents. 

The threshold is the y-intercept. Using the above example as a motivation, the first 

neural network is proposed. This network is a finite element-type network, and hence 

the name. 

Finite element-type network 

The entire input domain is divided into different regions that are decided during 

the training process. In each range, the function has to be approximately linear. The 

size of the regions vary, and are dependent on the nature of the function. In a certain 

region, if the function is highly non-linear, the range size will be small. To each 
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Figure 2.7: Finite element modeling 
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Figure 2.8: Finite element-type network. 
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region is assigned a neuron that approximates the function in that interval. There 

will be as many inputs to each neuron as there are dimensions to the function being 

approximated. 

In the first stage of training, the ranges are selected. In the second stage, the 

weights and the thresholds are picked. This is basically a linear regression problem. 

There will be as many neurons as there are regions in the functional domain. The 

number of elements for this network could be larger than a MLP, but there is no 

comparison to the reduction in complexity of the training process. Convergence of 

the network is also guaranteed. There are discontinuities at boundaries of the various 

ranges. This network can be used where smoothness of the approximating function 

is not a major concern. Smoother fits can be obtained using the network proposed 

in the following section. 

Piece-wise functional network 

This network is an extension of the finite-element type network. Ideally, in 

this network the domain of interest is divided into regions based on its functional 

nature. Figure 2.9 illustrates this for the one-dimensional case. The highly non­

linear function is a combination of sigmoid, gaussian, linear, and constant functions, 

arg, X2, and are the break points. The break points are picked such 

that the interval defined by any consecutive break points can be approximated by a 

non-linear function. The function can be made smooth. The learning stages, that 

this network goes through, could possibly closely match the human learning process. 

They are listed below: 

1) It identifies the regions based on the functional characteristic. This could be an 
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almost impossible task. 

2) To each region is assigned a neuron. Each neuron has as many connections as 

there are dimensions to the function being approximated. 

3) There is a range selector switch that assigns the input functions to the correct 

region in the functional domain. 

4) Training involves determining the connection weights and the threshold for each 

neuron. 

Let y = f(x) be the function to be modeled. Then according to the proposed model 

y = (2.12) 
i = l  

= 1 

= 0 o t h e r w i s e .  

y = is the output of the ith neuron, and n  is the number of regions. Thus 

for any input only one of the neurons is active. In other words, /j(x) has non-zero 

support in only the ith region. 

The approach taken, in the proposed network, is to break down the functional 

domain into several regions. In each region, the system being modeled can be ap­

proximated with desired accuracy by a single function. Dividing the functional space 

into regions could become extremely tedious, when the input dimension is greater 

than one. Techniques from mathematical morphology could be used for approximate 

classification of domain of interest into functional regions. But, once again things 

are being made too complicated. A simplistic approach would pick regions that are 

small enough, where lower order polynomials can do the approximation. A similar 

approach is taken in curve and surface fitting using splines. Chapter 3 discusses in 
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Figure 2.9: One-dimensional illustration of the piece-wise functional model. 

detail the theory of splines. 
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CHAPTER 3. CURVE FITTING WITH SPLINES 

Polynomials are among the most important class of functions used for represen­

tation of input/output relationships. If the function is approximated over a large 

interval of the input domain, the approximating polynomials could tend to be unac-

ceptably large. This could result in oscillations of the fitted curve. An alternative 

is to subdivide the input domain into small intervals. Lower order polynomials are 

then used to approximate in each of the subintervals. The polynomial pieces can be 

forced to blend smoothly to give the composite function, 

This smooth composite function is called a piecewise polynomial function or a spline. 

The polynomial pieces could be linear, quadratic, cubic, or even higher order poly­

nomials. The piece-wise cubic polynomial functions or cubic splines are the most 

popular. They are the compromise between accuracy and computational complexity. 

The discussion will begin with a treatise on general curve fitting with polynomials 

(Lancaster and Salkauskas 1986). 

(3.1) 
J 

Polynomial Interpolation 

A polynomial is said to belong to the class PJ\F, if its degree is N or less. In 

the simplest case of polynomial interpolation, we are given N + 1 x-values and the 
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corresponding y-values. The objective is to find the polynomial f(x) that satisifies, 

fixi) = yv i = 0,l,...,iV. (3.2) 

Here there is one-on-one mapping between the sets {xqjSj, .. • jXjy} and {?/0j2/1> • • • 

It has been proved that there exists a unique polynomial f(x) in the class such 

that equation 3.2 is satisfied. This polynomial takes the form, 

f { x )  ...-hoix-l-ao- (3-3) 

Lagrange's method for interpolation 

This is a different approach taken to determine the polynomial that satisfies 

Equation 3.2. Here N + 1 different but simpler interpolation problems are solved. 

These are then combined to form the complete solution. The N + 1 primitive set of 

y values, 

{1,0,...,0},{0,1,0,...,0},...,{0,...,0,1} (3.4) 

are taken. Polynomials Lq, i j , . . . ,  Ljy are obtained as solutions to the interpolation 

of {xQ, a;^,..., Xjy} with each one of the primitive sets in the order given. The 

polynomials Lq, Li,..., are known as the fundamental Lagrange polynomials or 

the cardinal functions. The polynomial that satisfies Equation 3.2 is given by 

N 
f { x )  = yoIo(®) + y i h i ^ )  + • • • + fiv-^jv(®) = (3.5) 

i=0 

The Lagrange polynomials belong to the class Pjy and exhibit the properties 

1, i  =  h  
(3.6) 

0, 
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Further they are linearly independent and hence form a basis for Pyy. Since all 

the Lagrange polynomials belong to Pjy, it follows that f{x) is also in Pjy. From 

Equation 3.6, Lj has N distinct zeros at all x^, except for i = j. Thus L^[x) can be 

represented as 

Li{x) = A:(x — sq)(X — xj).. .  (x — 

N 
= fc n (3-7) 

for a real number k. To solve for k, use 

N 
= 1 = ̂  IJ ~ (3*8) 

From Equations 3.7 and 3.8, 

JN 

i  =  (3.9) 

Hermite interpolation 

In Hermite interpolation, in addition to the functional values at the data points, 

slopes are also provided. Thus, one works with {xq, xj^,.,. ,  xjy}? {j/Q' Vli - • f jv}' 

and {t/q, j/j,...,Hermite interpolation involves obtaining f(x) which satisfies 

= f'{^i) = y'v « = 0,l,...,iV. (3.10) 

There are 2N + 2 degrees of freedom. Thus /(x) belongs to the class -P2iV+l' 

been proved that there exists a unique polynomial in this class that satisfies Equation 

3.10. To address cubic splines, only the case N = 1 need be considered. Thus we 

have two data points and four conditions, and hence the degree of the polynomial 
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is three. To solve this problem, four cardinal functions ^Tq, Kq , Hi , and Ki are 

required. These cardinal functions are cubic and easy to obtain. The interpolating 

Hermite polynomial is given by 

f { x )  = yo^o(®) + y ' o ^ o i ^ )  + V l H i i x )  +  y i K i { x ) .  (3.11) 

Linear Splines 

Linear splines are piecewise linear functions. As the name suggests, linear splines 

are continuous, but lack smoothness. ^[a,b] denotes the class of functions that are 

continuous at every point of [a,b]. ^^[a,b] denotes the class of functions that are 

continuous and have a continuous derivative at every point of [a,b]. ^^[a,b] denotes 

the class of functions that are continuous and have continuous derivatives of orders 

0,1,2,..., iV on [a,b]. Linear splines belong to the class ^®[a,b]. The first derivative 

of linear splines have discontinuities at points known as knots. Knots are the points 

at which linear interpolation segments start and terminate. 

Here one is trying to determine the linear spline, Lj^{x), that satisfies Equa­

tion 3.2. {xQ, a;]^,..., a;j^} and {t/q, yi,... are the knot sequence (K) and the 

ordinates respectively. At the outset, a cardinal basis is chosen using Equation 3.6. 

Solving, 

~ A: = 0,1,..., iV; i = 0,1,..., iV, (3.12) 

the cardinal functions l ^ ( x )  (i = 0,1,..., N )  are obtained. Here is the Kronecker 

delta and is given by 

. 1> i  =  k ,  
^ik ~ { (3.13) 

0, i  ̂  k .  
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Figure 3.1: Cardinal functions that make up the linear spline. 

These cardinal functions are the tent functions given in Figure 3.1. The expressions 

for the tent functions are 

I Q { X )  =  

x - x i  a  =  xo<a:<a; i ,  

0 ,  X I  <  X  <  b  =  x j ^ .  

L { x )  =  

a  <  X  <  X  ~  
- ®i- i '  0, 

X — X J _ Y  
x ^ - x j _ i ' ®i-i ^ ^ ^ 
X  X  ^  \ Y  

X j - X j _ ^ l '  ^  3 ;  <  X j ^ i ,  

0, X j - ^ l  <  X  <  b .  

l f ^ { x )  =  
0, a  <  x  <  X  

a:— (3.14) 

xjv-a^iV-T' 

Here j  can take the values 1,2,..., — 1. Also xg = a and x ^  =  h .  

From Equation 3.5, the linear spline has the form 

L n { X )  = h i ^ ) y o  + • • •  +  ̂ N i ^ ) y N  

= Ka;)^y, (3.15) 

rp rp 

where \ { x )  = • • • > ^ n { x ) ]  and = [ i / q ,  . . . ,  y j ^ ] -  The values of the functions 
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that are being interpolated show up in the above equation. The values y control the 

form of the linear spline 

Least squares approximation by splines 

In this case we pick M  <  N  knots. The knot set is given by A -q  < < ... < 

and Atq = a and fcjy = b. Here the interior knots may have no relation to the points 

Thus, given are and {yo,yi,.... The user 

picks the M knots. The linear spline is given by 

M  
^m(®) = IZ (3-16) 

i=0 

Here c^'s are the spline coefficients, and /j(x) is given by Equation 3.14. The approx­

imation error at data point xj is 

M  
h j  =  ̂  c ^ l ^ { x j )  ~ y j -  (3-17) 

z=0 

The sum of the squares of the error at all the data points is given by 

N  M  
(3-18) 

i=0 i=0 

From Figure 3.1, it is clear that for any j, only three of the li{xj)s are going to be 

nonzero. This is due to the fact that the support of li{xj) covers only three knots. 

The c'vs that minimize the error in Equation 3.18 are obtained from 

d E ( L )  ^  ^  
= 2 E { I] - yjYki^j) = 0 for ^ = 0,..., M. (3.19) 

k  j — Q  i = o  
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This in turn yields 

«oo • • «0M % 

"AfO • • "MM 

(3.20) 

where 
M  

^ki ̂  S A;, i — 0,1,..., M, 
i=o 

M  
bj^ — A; = 0,1,..., M. 

j=0 

The matrix [a^j] in Equation 3.20 is tridiagonal due to the nature of the support of 

the tent functions. This makes the inversion of easy to calculate the coefficients. 

The knots can be uniformly spaced through the input domain. If it is necessary to 

optimize the number of knots, one could start with the two outer knots and a center 

knot. The sum squared error to the right and left of the knots is calculated. Another 

knot is inserted in the region with the greater error. This process is repeated until 

desired accuracy is achieved. This algorithm was proposed by Ichida et al (1976). 

Piecewise Cubic Functions and Splines 

It is possible to have piecewise cubic functions that have one or two continuous 

derivatives whereever it is defined. Then the cubic functions belong to the classes 

^^[a,6] and respectively. Let K be the set of knots satisfying a = /?Q < FCJ < 

... < fcjY = 6. If the function values and first derivatives are known at the knots, 

then Hermite interpolation technique discussed earlier can be applied to each segment 

, kj] for i = 1,2,..., iV. The slope at is the same for the two cubic segments 
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meeting at that point, namely and [fc^, This ensures continuity of the 

first derivative at all the interior knots. Likewise, if the second derivatives are forced 

to be equal at all interior knots, one obtains piecewise cubic functions that have two 

continuous derivatives. Given N + I knots, the functional values, and slopes at the 

knots, it requires 2N + 2 cardinal functions to perform Hermite interpolation. The 

cardinal functions and are piecewise cubic polynomials with a small support. 

The interpolant can be written using Equation 3.11 as 

N  N  
S i x )  = J 2 ^ i { x ) y i  +  5D 

i=0 i=0 
(3.21) 

The following properties 

~ ~ 0, = 0, = S^j, (3.22) 

aid in the construction of the cardinal functions. The cardinal functions for i =1,..N-1, 

with = x^ — xi_i are given by 

0 ,  x<a:2_l ,  

-(2//i3)(x - x i _ { ) ^ { x  -  x i  -  h i l 2 ) ,  X i _ i  < x <  x i ,  

( 2 / / i ^ _ l _ l ) ( a ;  —  X j  +  h ^ ^ ^ / 2 ) ( x  —  x ^  ^  x  <  
(3.23) 

0, x >  X  

and 

«,(x) = . (3.24) 

O j  X  ^  

-  X i _ l f { x  -  X i ) ,  X i _ l  < X <  X i ,  

-  a ; ^ ) ( ®  "  ® i + l ) ^ >  <  x  <  

0 ,  x >  

For i  = 0, only the first two definitions in Equations 3.23 and 3.24 apply. For i  =  N ,  

only the last two definitions in Equations 3.23 and 3.24 apply. The two cardinal 
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Figure 3.2; Cardinal function for = 2. 

functions are illustrated in Figures 3.2 and 3.3 respectively. The piecewise cubic 

function given by Equation 3.21 ha^s a single continuous derivative. Piecewise cubic 

polynomials that have two continuous derivatives are referred to as cubic splines and 

are discussed in the following section. 

Cubic Splines 

For the same knot sequence K ,  the cubic spline S(x) is a cubic polynomial in 

every interval A;^-] (i = 1,2,... ,iV), such that it has two continuous first and 

second derivatives at every interior knot. Thus S { x )  belongs to ^^[a, 6]. To construct 

the cubic spline, one starts with Equation 3.21. This equation has 2iV+2 parameters. 

The condition that S(x) takes the values yQ,yi, • • • ,y]\f at ^q,..., kj\f respectively 

applies iV + 1 constraints. The slopes would supply the remain N + I constraints. 
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Figure 3.3: Cardinal function for Xj = 2. 

But the constraint that the second derivative of S(x), S"(x), be continous at all the 

interior nodes facilitates expressing the slopes explicitly in terms of the functional 

values. Thus the spline can be determined based on just the functional values, using 

Equation 3.21. Let {Arg, ..., fcjy}, {yo,yi, • • • iVn}, and be 

the knots, functional values at the knots, and the corresponding slopes respectively. 

It is assumed that the Xj = for i = 1,2,..., iV. The second derivative of S(x) at 

an interior knot Xj approaching from the left and right are given by 

5''(a:^)= Iim_5"'(x) and S''{xp= lim 5"(®) 
x-^x^ 

respectively. But by the definition of cubic splines, the second derivative approaching 

from the left and right should be the same. Thus, 

S''{xl) - 5"(x+) = 0. (3.25) 
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Combining this equation with Equation 3.21, 

N N 
E + S = »• 
«=0 2=0 

Due to the small support of the cardinal functions, the summations only have three 

terms each (refer Figures 3.2 and 3.3). The above equation reduces to 

&+1 A+1 
T ,  + E  )i=0-

i = k — l  i = k — l  

This is solved using equations 3.23 and 3.24. It is found that the N + 1  slopes satisfy 

the N — I equations 

- v k  

h  \ h k  h k + i J - '  h i  -  ' 

(3.26) 

for A; = 1,2,..., iV — 1 and hj^ = — xj,. Two more conditions are needed for 

unique solution of the slopes. One way of specifying these will lead to the natural 

cubic spline, to be discussed later. A general way of expressing the two conditions 

are 

2mQ + = CQ 

~ ^N' (3.27) 

The user picks ^Q, CQ, and c^. Establishing the notations 

^ k  =  ̂ h l i v k  -  y k - i ) / h ]  +  ̂ f ^ k i i v k + i  - y&)/^ j fc+i ] '  ^  =  i ,2 , . . . , iv  -1 ,  
(3.28) 
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equations 3.26 and 3.27 can be written in the form 

2 ^0 0 •• • 0 0 0 mo CO 

Xl 2 111 . .. 0 0 0 mi 

0 A2 2 . . .  0 0 0 m2 C2 

0 0 0 . . .  2 I^N—2 ® mN-2 ^N-2 

0 0 0 . . .  X p f _ i  2  I ^ N — l  rriN-i ^N-1 

O
 

o
 

o
 

o
 

to
 

1 mĵ  

On setting the second derivatives equal to zero at the endpoints, the natural spline 

is obtained. Thus the curvatures are zero at the end points. Thus the natural cubic 

spline S(x) also satisfies the end conditions S"(a:o) = S"(a;jy) = 0. The cardinal 

splines obtained from Equation 3.21 with the slopes obtained from Equation 3.29 

have large support and hence is not computationally suitable. B-splines are non 

cardinal spline basis functions having minimal support. 

B-splines 

Similar to the tent functions for linear splines, one can can generate basis func­

tions for cubic splines. They are called B-splines. The requirement that the cubic 

spline be twice difFerentiable requires the B-spline to have a support of four consec­

utive intervals. 

Theorem (Lancaster and Salkauskas 1986): Let K be a knot sequence satisfying 

/jQ < ^1 • • • < ^M' j = 2,3,..., M — 2, there exists a choice of non-zero ordi-

nates fj_i,fj,fj^i such that the natural cubic spline with knot sequence K that 



www.manaraa.com

46 

0.7 

V 0.3 
CO 

g 0.2 

O.S 1.S 2 2.5 
X In distance units 

Figure 3.4: A B-spline. 

3.5 

satisfies 

fit ^ —j "t" 1) 

0, otherwise, 

vanishes outside the interval (fcj_2, ̂ j+2) ( slope at kj_2, ̂ j-t-2)' Such 

a natural cubic spline is termed B-spline and denoted by Bj_2. A B-spline that starts 

at knot Ajq, and terminates at is denoted by Bq and is illustrated in Figure 3.4. 

The B-spline consists of four polynomials joined together as shown in Figure 3.4. 

The B-spline is obtained by setting = 4 in Equation 3.29. Also from the 

definition, mg = = /q = f^ = 0, and use 

A'O = <^0 = 3[(/i -/o)//ii], A^-i-1, = 3[(/jY -
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Using these end conditions and Equations 3.27, 3.28, and 3.29, we obtain 

. (3.30) 

The first and last rows of Equation 3.30 gives 

m3 = -Sf^lh. (3.31) 

The remaining three rows combine to give 

"*1 = IS + a - a} .">3 = {-"/2 + /l - /a} • (3-32) 

From equations 3.31 and 3.32, we obtain 

h = W2> /3 = V4/2, /2 = arbitrary. 

If the values are picked to be /2 = 2/3, /i = /3 = 1/6, the B-spline is said to be 

normalized. Then, 

/2 + 1/4/2 + 1/4/2 = 1-

This means that for the B-spline in Figure 3.4, 

5o(fci) = 1/6,^0(^2) = 2/3, and ^0(^:3) = 1/6. 

The B-spline that was obtained is only a basis function. But using this basis function, 

all the B-splines that are non-zero in the range [Arg = a, = 6] can be obtained. 

All the other B-splines can be constructed by shifting Bq to the right knot. Thus if 

2  1 0  0  0  

1 
2 2 1 

5 0 0 

0 1 
2 2 1 

2 0 

0 0 1 
2 2 1 

2 

0 0 0 1 2 

mi 0 

^ 2 = 3  0  

7713 0 0 

0 0 0 

0 0 0 0 

^ ^ 0 A 

-JE ^ Jfi -^3 
n _1 1 n 
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Figure 3.5: B-splines with support in [0,4]. 

^0 is shifted one knot to the right, we obtain J5j. This is provided that all the knots 

are equally spaced. Some of the key points to be noted are listed below: 

1. For the given knot sequence K = {^0,^1,...,^]^}, the set of B-splines that 

have non-zero support in [a,b] are B_3,52,...,and Thus for N-f-1 knots, 

there are N-t-3 B-splines that have non-zero support. Figure 3.5 shows the B-splines 

(5_3, B_2t • •, 5]^, ̂ 2, -S3) with non-zero support for N=4. 

2. At any point in [a,b], there are at most four B-splines that have non-zero values. 

This is due to the fact that any point falls in the support of a maximum of four 

splines. For any point x in [fcp the non-zero B-splines are B^_3, 5j_2j 

and 

3. Further, since the B-spHnes are normalized, the sum of the values of the B-splines 
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at this point sum to unity. This is given by, 

N - 1  
Y. = 

!=-3 

4. The cubic spline for the knot sequence K can be written as 

N - 1  
S { x ) =  a i B i i x )  (3.33) 

i=-3 

The a^-'s are the spline coefEcents and they uniquely determine the function being 

approximated. 

5. Cubic B-splines are of order four. The support of a B-spline of order n is n+1 

knots. The nth order B-spline, whose support is [fc^, is denoted by 

6. The most efficient way of computing of B-splines of order n is to start from a 

B-spline of order one, and use the recurrence relation 

•®z,n(®) ~ 1(®) + L. fc. (3.34) 

Here i = —3,..., iV — 1 and n = 1,2,3,4 Thus B-splines of order two are obtained 

from B-splines of order one. It is also clear from Equation 3.34 that the B-splines are 

a function of the knots alone. The definition of the B-spline of order one is given by 

0, a: < ki, 

1 ,  k i < x < k i ^ i ,  i  = - 3 , - 2 , . . . , A r  +  3 ,  ( 3 . 3 5 )  

Note: When the order is not specified, the splines are assumed to be cubic splines. 

Bi{x) is a cubic spline. 
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Constructing an interpolating cubic spline 

The objective is to construct an interpolating cubic spline S(x) given 

Sikj) = yj, ;=0,l, . . . , i V  

. The cubic spline has B-splines as basis functions. Thus from Equation 3.33 

N - 1  
S { x ) =  X] =  i = 0, 1 , . . . , TV. (3.36) 

z=—3 

The values of B^{kj) can be computed using Equation 3.34. It is to be noted that for 

the jth Equation the non-zero B-splines are and In Equation 

3.36, there are N -[• I equations and iV -f 3 unknown coefficients. The remaining 

two conditions are obtained from the end conditions, iS"'(A:o) = = 0. From 

Equation 3.33 

S{kQ) = a_35_3(fco) + a_2-S_2(fco) + 

and 

5(fcjv) = aiV-3^iV-3(%) + aiV-2^iV-2(%) + ^ N - l ^ N -l i ^ N ) -

Then the leist two equation required for solving 3.36 are 

S"{kQ) = a_35_3"(^o) + «-2^-2"(^o) + a-l-®-l"(^o) = 0^ (3-37) 

5"(%) = aiV-35jV-3"(%) + a^•2^^•-2"(%) + «iV-l-^iV-l"(%) = 0-

The required second derivatives are given by (Lancaster and Salkauskas 1986) 

=  ( k i  -  k _ i ) { k i  -
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= ( k i - k _ - { ) ( k 2 - k _ y Y  

0 
%-3 (%) - %_i)(%+i - %_2)' 

%-2 (^iv) I •*• - %_2 } ' 

%-l (%) - %-l) 

Six arbitrary nodes A:_3,k_2j^—l^^N+l^^N+2^ ^N+3 appended, three 

each to either end of the knot sequence. These knots have to satisfy k_^ < k_2 < 

... < ^jV+S" coefficients of Equation 3.36 can also be determined by method of 

least squares. 
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CHAPTER 4. MODELING WITH SPLINE NETWORKS 

Chapter 3 discussed modeling of one-dimensional functions using splines. The 

next step is to merge spline techniques with the proposed neural network, given by 

Equation 2.12, in Chapter 2. Equation 2.9 gives the neural network model for the 

one-dimensional approximation of a single input - single output system. Figure 2.5 

gives the schematic for the corresponding neural network architecture. Equation 3.33 

gives the expression for the cubic B-spline approximation, S(x), of a one-dimensional 

function. The similarities between Equations 2.9 and 3.33 are striking. In the former 

equation, the a^-'s are the connection weights from the the output of the ith neuron 

to the neuron in the output layer. In the latter equation, the a^-'s are the B-spline 

coefficients. The /j(a;)'s in Equation 2.9 are sigmoidal functions in comparison to the 

B-spline basis functions in Equation 3.33. 

One-dimensional Spline Network 

Figure 4.1 shows the architecture of this network. The activation functions of 

the neurons in the hidden layer are the B-spline basis functions. The B-spline basis 

functions are obtained as solutions of Equation 3.34. The connection weights from 

the input layer neuron to the hidden layer neurons are unity. The connection weights 

from the hidden layer neurons to the the output layer are obtained as solutions of 
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^ y = S(x) 

Figure 4.1: Single input- single output spline network. 

Equations 3.33 and 3.37. The neuron in the output layer peforms the summation 

operation. The number of neurons in the hidden layer are a function of the number 

of knots, and are picked by the user. The number of nodes in the hidden layer are 

picked by trial and error, whereas the number of knots in the B-spline are picked by 

the user. Picking the knots could be made a rather simple process. Yet obtaining 

the weights for the neural network is no trivial process. The neural network could 

even fail to converge. On the other hand, the B-spline coefficients can be obtained 

by solving linear Equations 3.33 and 3.37. Thus the spline network retains non-linear 

characteristics of the neural network but does not possess its ambiguities. 

Design of the network 

The design involves picking the number of neurons in the hidden layer, the basis 

functions, and the connection weights. Let there be N data points with abscissas and 

BgCx) 

X 

N-2 

B 
N-2 
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ordinates given by {xq jXj ,. . and {yQ,yi,,.. respectively. The 

range of the abscissa is given by [a = X Q , 6  = The knot sequence {^Q  = 

= 6} is also picked with the first and last knots of the sequence 

corresponding to the first and last abscissas respectively. The interior knots have to 

be in ascending order and do not have to coincide with the abscissas. The knots do 

not have to be equally spaced. 

The first step is to pick the basis functions. All the basis functions that have 

finite support in [a,b] have to be included. If the order of B-splines is n (degree = 

n — 1), then the number of B-spline basis functions is 

K = N + n — 2. (4.1) 

Thus, K is the number of nodes in the hidden layer. Extra knots have to be provided 

to the knot sequence so that all the B-spIines have support within this knot range. 

The updated knot sequence is given by {^—n+b n+2'• • •' ̂ iV'* • •' ̂ iV+n—2}* 

The B-spline basis functions that have support in [a,b] are given by 

B-spline starts at the knot and 

has a range Thus it has five knots in its support. A B-spline of order 

n is computed using the recurrence formula 

''^z-l-n-1 '^t+n ~ '^t+l 

The nature of the B-spline is going to solely depend on the positioning of the knots. If 

all the knots are equally spaced, all the B-splines are shifted versions of one B-spline. 

The next step is to determine the weights (wi) of the network. It is to be noted 
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that the weights are the coefficients in the equation 

N - 2  
S { x ) =  ^ (4.3) 

i=-3 

There are K weights and N data points, and cubic B-splines are selected for basis 

functions. Substituting the N data points into this equation, we obtain N linear 

equations with (TV + n — 2) unknowns. The n — 2 additional equations required for 

solving for the weights are obtained by using the end conditions. For a cubic B-spline, 

which is used most in this research, the two equations are given by 

S'W = 0-3B-3"(«^o) + <>_2B-2"(«^O) + = 0. 

S"(%) = 

All the notations have been explained in Chapter 3. Thus, obtaining the weights 

involves solving linear equations, which is fairly straight forward. Closer the knots, 

better the approximation. The number of knots picked in the range [a,b] should be 

the same as the number of data points used. To keep the method simple, one could 

use uniformly spaced knots corresponding to the abscissas. 

Illustration of one-dimensional spline network with different activation 

functions 

{1,2,3,4,5,6,7} and {12,14.2,16.6,20.5,26,31,37.4} are the absissas and ordinates 

respectively for a given set of data points. There are N = 7 data points. The 

knot sequence is chosen to be {-2,-1,0,1,2,...,7,8,9,10}. Cubic B-splines are used as 

activation functions. Thus there are {K = N + n — 2 = 9) nine neurons in the hidden 

layer. The cubic B-spline activation function that has support [1,5] is given in Figure 
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4.2. The result of approximation with the spline network using cubic spline activation 

functions is given in Figure 4.3. The root mean square error over ten points not used 

in the interpolation is given by 

E = 

\ 

10 6 
E ( E -  y j r  =  0.02«C. (4.5) 
j=l i=-2 

The result of using linear spline activation functions is given in Figure 4.4. Here the 

order of the B-sphne is two. The knot sequence for this case is {0,1,2,...,7,8}. The 

root mean square error over the same ten points is 

E = 0.1466® C. 

Figure 4.5 gives the result of with fewer data points, and cubic spline activation 

functions. In this case the abscissas are {1,3,5,7}. The root mean square error over 

the same ten points is E = 0.4268''C7. Figure 4.6 gives the result for linear spline 

activation functions for the updated data set. The root mean square error is E= 

0.4531°C. The technique of selecting the number of hidden layer neurons (knots) will 

be to start with two neurons, and keep adding neurons until the required accuracy is 

obtained. 

Higher Dimensional Spline Networks 

Three-dimensional spline basis functions take the place of one-dimensional spline 

basis functions, when it comes to surface approximation. As the name suggests 

surface splines are three dimensional stuctures. Interpolation with surface splines are 

computationally very expensive. Surface interpolation by tensor product method, 

which is computationally less intensive, is used for the spline network. This technique 
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Figure 4.2: B-spline (5]^). 

is both accurate and computationally attractive. Further, this technique can be 

easily extended to higher dimensional approximations. The technique for surface 

approximation is explained below. Higher dimensional approximation follow the same 

rules. 

The data points are assumed to lie on a rectangular lattice in the xy plane and 

functional values, z = f(x,y), are assigned to each point. Let there be M points in 

the x-direction and N points in the y-direction. The set of data points are given by 

S02.1 of the approximation is to determine 

the surface, S(x,y), that satisfies 

Sixi,yj) = zij, (4.6) 

for z = 1,2,..., M, and j = 1,2,.. . ,  i V .  The rectangular lattice is said to be uniform 

if the oj^'s and the j/j's are uniformly spaced. The surface spline S(x,y) is defined to 
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Cubic spline interpolation with 7 data points 
40 

X - Actual data points 

Decreasing steam control valve pressure for constant fan speed 

Figure 4.3: Spline network approximation. Fan speed = 350 rpm, steam control 
valve pressure decreases from 6 psi to 4.5 psi in steps of 0.25 psi. 
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Linear spline interpoiation with 7 data points 
40 

-- Result from Figure 4.3 

X - Actual data points 35 

25 

Decreasing steam control valve pressure for constant fan speed 

Figure 4.4: Approximation with linear spline activation functions. Fan speed = 350 
rpm, steam control valve pressure decreases from 6 psi to 4.5 psi in steps 
of 0.25 psi. 
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Cubic spline interpolation with 4 data points 
40 

- Result from Figure 4.3 

X - Actual data points 

^'30 

Decreasing steam control valve pressure for constant fan speed 

Figure 4.5: Approximation with fewer data points. Fan speed = 350 rpm, steam 
control valve pressure decreases from 6 psi to 4.5 psi in steps of 0.25 psi. 
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Linear spline Interpolation with 4 data points 
40 

-- Result from Figure 4.3 

X - Actual data points 

•§30 

20 
a. 

Decreasing steam control valve pressure for constant fan speed 

Figure 4.6: Linear spline approximation with fewer points. Fan speed = 350 rpm, 
steam control valve pressure decreases from 6 psi to 4.5 psi in steps of 
0.25 psi. 
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be 
N M 

Six,y) = 53 X) wijBij{x,y) (4.7) 
j = l i z = l  

The basis functions y )  are obtained using the tensor product method. By this 

method, 

i —  1,2,  
B i j ( x , y )  =  B i ( x ) B j ( y ) A  (4.8) 

I  i  = l ,2 , . . . , iV.  

Here 5^5 are the one-dimensional basis functions defined on the x-line. Bi and 

Bj are B-splines of order m and n respectively. Then, the support of B^j is the 

rectangular lattice defined by [xj^^yj] x Figure 4.7 illustrates the basis 

function obtained by the tensor product method. This bicubic spline has support 

[1,1] x [5,5]. It has been proved that there exists a unique set of weights {w^j} that 

satisfy Equation 4.7. The technique used for calculating the weights is as described. 

One dimensional spline curves are fit to each row of the data space. The set of 

B-spline basis functions are the same. But there are MxN coefficients or weights. 

The next step is to fit one-dimensional spline curves in the column direction. The 

actual data points are used, but the coefficents obtained in the row-wise interpolation 

are used as ordinates. The MxN coefficients obtained in this manner, constitute the 

MxN weights. One could have started with column-wise interpolation with Httle 

or no effect on the final result. This technique can be extended to any number of 

dimensions. The interpolation along the rows is denoted by 

M N 
S i { x , y )  = £ £ (4-9) 

i = l j = l  
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The M x N  coefficients j's) are obtained by solving the MxiV equations 

,  i  =  1 ,2 ,  
~ ^ij { (4-10) 

The interpolation along the columns is denoted by 

M N 
S2i^vyj) = Z] Z) ̂ i,jBi{x) (4.11) 

i=l;=l 

The MxN coefficients are obtained by solving the MxN equations 

= 1,2,... ,M, 
(4.12) 

j = l,2,...,iV. 

The schematic of a two input/two output spline network is given in Figure 4.8. 

The weights from the input layer neurons to the hidden layer neurons are unity. It is 

to be noted that the hidden layer is two-dimensional. It would be n-dimensional for 

a system with n inputs. There aje MxN neurons in the hidden layer. The activation 

functions for the hidden layer neurons are given by Equation 4.8. The connection 

weights from the hidden neurons to the output neurons are obtained as solutions 

to Equation 4.12. Thus the entire two input/single output spline network has been 

designed. 

Modeling the HVAC System 

The schematic of the HVAC system is given in Figure 1.1. The control variables 

are fan speed (air flow rate), water flow rate, and steam pressure. The controlled 

variable is the outlet air temperature. It was observed that the air temperature 

differential is a function of the control variables and fairly independent of inlet air 
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y in distance units 
X in distance units 

Figure 4.7: Surface B-spline basis function. 
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out put 1 input2 
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Figure 4.8; Two input - two output spline network. 
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temperature. The outlet air temperature differerential is, for this reason, taken to 

be the controlled variable. Thus the schematic of the model for the HVAC can be 

simplified to the form in Figure 4.9. The objective of the model is to provide the 

air temperature differential, given the three control variables. The air temperature 

differential is the difference in temperatures between the incoming and outgoing air 

streams. Normally the system variables would be picked to facilitate the generation of 

the required temperature differential. For the HVAC system, the air flow rate, water 

flow rate, and the steam pressure are controlled by the supply fan, water pump, and 

the pneumatic control valve respectively. The fan speed varies from 350 rpm to 750 

rpm. The pressure on the control valve varies from 4.5 psi to 6 psi. The water pump 

was set to have three discrete speeds: low, medium and high. A spline network is 

used to model the system. Since the water pump has three discrete settings, three 

spline networks were used. Each one of the networks correspond to one of the settings 

of the water pump. Thus, the networks have fan speed and steam pressure as inputs, 

and air temperature differential as the output. The schematic of such a network 

is given in Figure 4.10. The dimension of the hidden layer is 8 x 6. The columns 

correspond to the steam pressure. The network is designed using the steps described 

in the previous section. The activation functions for the hidden layer neurons are 

given by 

i  = 1, 2 , . . . , 8 ,  
B i j { x , y )  = B i { x ) B j { y ) ,  (4.13) 

i = l,2,...,6. 

B i { x )  and B j { x )  are both cubic B-splines. Such an activation function is called a 

bicubic spline. Figure 4.11 gives the output temperature differential surface to be 

approximated. Figure 4.12 gives the temperature differential surface approximated 
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Figure 4.9: Black box model of the HVAC system. 

by the network in Figure 4.10 for water pump setting on high. This network had 8 x 

6 neurons in the hidden layer. Figures 4.13 gives the approximation error. The error 

is higher where knots had a larger separation. The approximation error is negligible 

over a test sample of 56 operating conditions, and is given in Table 4.1. The error is 

larger when linear splines are used for interpolation along the rows, and cubic splines 

along the columns. Such activation functions are called linear-cubic. In this case, 

Bj(x) is cubic, and Bj{x) is linear. The error is larger in this case as illustrated in 

Table 4.1. 

To aid in fault diagnosis, the hot water to air heat exchanger, and the steam 

to water heat exchanger are also modeled using spline networks. The schematics 

of the black box models for these are given in Figures 4.14 and 4.15 respectively. 

The model of the steam to hot water heat exchanger gives the water temperature 

differential for certain steam pressure, and water flow rate. A two input-single output 
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Figure 4.10: Spline network model for the HVAC sytem. 
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Control valve pressure 0 0 
Decreasing fan speed 

Figure 4.11: Surface to be approximated (water pump speed - high). Steam control 
valve pressure decreases from 6 psi to 4.5 psi in steps of .25 psi. Fan 
speed decreases from 750 rpm to 350 rpm in steps of 50 rpm 
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* 

Control valve pressure ® Decreasing fan speed 

Figure 4.12: Surface approximated by the network for water pump speed - high. 
Steam control valve pressure decreases from 6 psi to 4.5 psi in steps of 
.25 psi. Fan speed decreases from 750 rpm to 350 rpm in steps of 50 
rpm 
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Control valve pressure Decreasing fan speed 

Figure 4.13: Error surface. Steam control valve pressure decreases from 6 psi to 4.5 
psi in steps of .25 psi. Fan speed decreases from 750 rpm to 350 rpm 
in steps of 50 rpm 
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Table 4.1: Summary of results. 

MODELING NUMBER OF ROOT MEAN ACTIVATION 
TECHNIQUE TEST POINTS SQUARE ERROR FUNCTION 
Spline network 

with 6x8 56 0.1976 bicubic 
hidden layer 

Least 
squares 56 0.1978 bicubic 
method 

Spline network 
with 6x8 56 0.21 linear-cubic 

hidden layer 
Spline network 

with 5x7 56 0.4940 bicubic 
hidden layer 

Spline network 
with 5x7 56 0.6896 linear-cubic 

hidden layer 

spline network was used to model this unit. Steam flow and water flow rates are the 

inputs. The hidden layer had 7x5 neurons. The modeled surface is given in Figure 

4.16. Three two input-single output networks are used to model the hot water to air 

heat exchanger. The three networks are for the three different waterpump settings. 

The hidden layer for each one of the networks had 8x6 neurons. 

Table 4.1 summarizes the results. The spline networks have done a commendable 

job in replicating the working of the HVAC system. As the table shows, the error 

increases as the dimension of the hidden layer decreases. This is understandable. 

The least squares method of determining the coefficients would work better when 

the data being approximated is not very smooth. Using basis functions that are 

of degree less than three could decrease the accuracy. Picking the right dimension 
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Figure 4.14: Black box model of the hot water to air heat exchanger. 
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Figure 4.15: Black box model of the steam to hot water to heat exchanger. 
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35 >, 

2 

Decreasing water flow rate Control valve pressure 

Figure 4.16: Water temperature differential surface for the steam to hot water heat 
exchanger. Steam control valve pressure decreases from 6 psi to 4.5 
psi in steps of .25 psi. Water flow rate is high, medium-high, medium, 
medium-low, and low for 1, 2, 3, 4, and 5 respectively. 
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is not critical. One quick and dirty approach is to start with the end point and 

a middle point in each dimension. Neurons can then be added until the necessary 

accuracy is obtained. Training the network is extremely straightforward. There are 

no endless training phases. Convergence is always guaranteed. If functions with 

numerous transitions are being modeled, one may have to pick more knots around 

regions of high activity. Gradient methods could be used to detect such regions of 

rapid transitions. The functions that govern the operation of HVAC system are fairly 

monotonic. So the knots could be uniformly spaced. Thus, it has been proved that 

spline networks are an excellent alternative to artificial neural networks for functional 

approximation applications, that involve fairly smooth functions. 

Spline Networks versus Artificial Neural Networks 

A comparative study is given below that compares spline networks with neural 

networks. The objective is to show how the spline networks have improved on the 

disadvanatges of neural networks, that were discussed in Chapter 2. 

1. Size of input/output data; The number of input/output pairs available for 

modehng the surface in Figure 4.12 were 56. The input vector and the output vectors 

were two-dimensional and one-dimensional respectively. The neural network failed 

to converge for the given input/output set. Numerous combinations of layers, and 

number of neurons per layer were tried. The neural network requires a much larger 

input/output training set. The size of the input/output set for neural networks is 

rather ambiguous. Spline networks do not have such convergence problems. If fewer 

data points are used, the modeling error will be higher. To make a comparative study, 

one-dimesional data from Figure 4.3 was used. A neural network with six neurons 
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in the hidden layer was used. The hidden layer neurons had sigmoidal activation 

functions, and the ouput neuron had linear activation function. 

2. Training time: Training spline networks are much faster than training neural 

networks. Figure 4.17 shows the result of training one-dimensional data using both 

splines and neural networks. The spline network took 1529 floating point operations 

(flops) and a cpu time of 0.533 seconds. On the other hand, the neural network took 

a cpu time of 115 seconds and 3,102,456 flops. The surface spline approximation in 

Figure 4.12 took a cpu time of 1.65 seconds and 109,074 flops. It took 3,104 training 

cycles before the neural network converged. The numerous hours spent in identfying 

the required neural network is not included, 

3. Spline networks do not have any convergence problems. 

4. Neural networks involve solving complex non-linear equations, whereas spline 

networks involve soving linear equations. 
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Figure 4.17: One-dimensional spline network approximation versus neural network 
approximation. Fan speed = 350 rpm, steam control valve pressure 
decreases from 6 psi to 4.5 psi in steps of 0.25 psi. 
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CHAPTER 5. FAULT DETECTION USING THE ARTIFICIAL 

INTELLIGENCE APPROACH 

To classify faults in systems, one can take several approaches. There could exist 

a good working mathematical model of the system, and the parameters of this model 

could be measurable or obtained through estimation. If this mathematical model 

encompasses all the behavioral patterns of the system, then using the mathematical 

model would be the best approach. But most real-life systems cannot be completely 

represented by mathematical equations. Another technique is to teach a neural net­

work known fault conditions and the factors that are responsible. This is basically a 

pattern recognition problem. The neural network is trained to classify error signals, 

as belonging to a certain class of faults. Neural networks are trained on numerical 

data. The input to the neural network could consist of various error signals. The 

output layer has as many neurons as there are error classes. Thus each one of the 

neurons correspond to a certain class. When the output of a neuron is one, it means 

that the network has identified the error class corresponding to that neuron. These 

networks assign an error to only one class, though in reality it could belong to more 

than one class. 

These two techniques discussed use mathematical models, and numerical data 

respectively. But there exists information that cannot be stated mathematically, or 
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in the form of numerical input/output pairs. This information exists in the minds of 

technicians and people who run the systems. This is the kind of knowledge that is 

obtained over period of time from hands on experience. There should be some way of 

tapping in to the wealth of knowledge stored in these minds. Fuzzy logic techniques 

help us to exploit what one may call common-sense rules. These are often referred 

to as linguistic rules in fuzzy logic. For the HVAC system under consideration, only 

an error in water flow rate could affect the water temperature differential as well 

as the air temperature differential. Thus, if the technician finds out that both the 

differentials have departed from expected values, then he would infer that the water 

pump is at fault. " IF the air temperature differential error is significant AND the 

water temperature error is significant THEN the water pump is faulty", is an example 

of a linguistic rule. Fuzzy logic techniques allow us to incorporate all these linguistic 

rules so as to provide mapping from input to output variables. 

Fuzzy Logic System 

The basic components of a fuzzy logic system are the fuzzifier, inference engine, 

and the defuzzifier (Lee 1990). This is illustrated in Figure 5.L The fuzzifier cissigns 

input variables membership values to different fuzzy sets. The universe of discourse 

of each variable is divided into linguistic overlapping sets. The number of these sets 

is decided by the user. Figure 5.2 gives the universe of discourse of both the input 

variables, A and B, to be {0,4}. The universe of discourse of the output variable, 

C, is {0,40}. The universe of discourse is divided into low(L), medium(M), and 

high(H) regions. This is facilitated using membership functions. In Figure 5.2, the 

membership functions are triangular. The membership functions could take other 



www.manaraa.com

80 

Knowledgebase 

Decision 

making logic 
Fuzzifier Defuzzifier 

Figure 5.1: Fuzzy logic system. 

shapes. The overlapping nature of the membership functions makes it possible to 

assign the input variables to more than one fuzzy set. In Figure 5.2, if the value 

of the input variable A is 1.2, it belongs to the fuzzy sets low and medium. The 

membership values to the different fuzzy sets are given by 

f i l { A =  1 . 2 )  =  0.8 (5.1) 

/zjv/(A=1.2) = 0.2 

lijjiA-1.2) = 0. 

The membership values give the degree to which input belongs to each one of the 

fuzzy sets. Fuzziness measures the degree to which an event occurs. The underlying 

philosophy in fuzzy logic is that membership to any class is fuzzy. This implies that 

one can only tell the degree to which an element belongs to a certain class. 

The inference engine consists of the knowledge base and the fuzzy reasoning 
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Figure 5.2: Universe of discourse for the input variables. 
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scheme. The knowledge base consists of all the "IF - THEN" rules. These rules 

linguistically relate the input variables to the output variables. All of these rules 

are summarized into a fuzzy association matrix (FAM). These rules are based on 

common-sense rules, and other available information on the nature of the system. 

The FAM that relates the input variables, A and B,  to C are given in Figure 5.3. 

The first row of this matrix reads: 

IF A is low AND B is low THEN C is low, 

IF A is low AND B is medium THEN C is low, and 

IF A is low AND B is high THEN C is medium. 

Usually only the elements that correspond to significant FAM rules are filled. The 

element in the second row and second column of Figure 5.3 is not filled, indicating 

that this particular situation does not arise. The fuzzy reasoning scheme could use 

the Mamdani fuzzy reasoning scheme or the Mizumoto's fuzzy reasoning scheme. In 

either scheme, the objective is to assign membership values to the different output 

fuzzy sets. The output fuzzy sets are low, medium, and high. The first step is to 

determine all the rules from the FAM that are applicable for the input: A=\.2, B=0.8. 

A has membership in the low and medium fuzzy sets, whereas B has membership in 

the medium and high fuzzy sets. Thus the fuzzy rules that apply are, 

IF A is low AND B is high THEN C is medium, and 

IF A is medium AND B is high THEN C is high. 

IF A is low and AND B is medium THEN C is low. 

The fourth rule that correpsonds to A and B belonging to medium fuzzy sets is not 

significant. Then according to the Mamdani scheme (Lee 1990), the membership 
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Figure 5.3: Fuzzy association matrix(FAM). 

values to the three sets are, 

HL{C) = min{ni[A),n^j{B)) (5.2) 

= mm(0.2,0.2) 

= 0.2 

H M { C )  = r n i n { n i { A ) , n u { B ) )  

= mm(0.8,0.8) 

= 0.8 

= min(0.2,0.8) 

= 0.2 

The Mizumoto reasoning scheme (Lee 1990) uses the product of membership functions 

instead of the minimum. 

The final unit in the fuzzy logic system is the defuzzifier. This unit converts 
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the fuzzy membership values of the output to a crisp number. There are several 

defuzzification techniues. One of the more popular techniques is the center of gravity 

method. In this technique the output is given by 

C = ^ (5.3) 

= 20. 

Here, Cjs are the centers of the fuzzy sets, and ^js are the respective membership 

values. From Figure 5.2, cj^ = 10, = 20, and cjj = 30. In effect, numerical data 

has been mapped to numerical data. A neural network learns this mapping based 

on numerical input/output pairs. There has been lot of effort to combine the powers 

of neural networks and fuzzy logic. This has resulted in fuzzy-neural, neuro-fuzzy 

and many other innovative networks. A neural network that uses fuzzy concepts is 

discussed in the following section. 

Fuzzy Neural Network 

Neural networks are widely used in pattern classification problems. In such 

networks there are as many output neurons as there are pattern classes. When an 

input feature vector is presented to the network, only one of the output neurons is 

activated. The network is trained to assume that the pattern classes are distinct. But 

in reality, this is hardly the case. Two or more pattern classes could overlap. The 

neuron in the output layer that is activated the most is turned on. All the others are 

simultaneously turned off. It could happen that the output of two neurons are 0.5 and 

0.495. The neuron reading 0.5 is turned on, thus denoting belongingness to a certain 
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pattern. On being presented with an almost identical feature, the output of the same 

neurons could be 0.495 and 0.5 respectively. Thus nearly identical features may be 

grouped into different classes. This kind of ambiguity arises due to the belonginess 

of features to different classes. This reminds one of fuzzy logic and the degree of 

belonginess to different sets. Thus, fuzzifying the input feature space and the output 

pattern class space could be the solution to deal with belongingness to more than 

one class. This is the underlying principle of the fuzzy neural networks discussed in 

this section (Pal and Mitra 1992). 

In this fuzzy neural network based pattern classification, a neural network is the 

heart of the system. Let the number of variables in the feature vector (F) be m, the 

number of pattern classes be C, and the number of training samples be N. The first 

step is to fuzzify the input feature vector. Each one of the features in F is fuzzified. 

The universe of discourse of the features are fuzzified into various sets. Let these sets 

be low, medium, and high. Thus if one starts with the m-dimensional feature vector 

Fi = Fi2, fuzzification we obtain the 3m-dimensional vector 

M M •  •  • ' ( ^ • ' ^ )  

To fuzzify the input features, overlapping membership functions are used. The mem­

bership functions could be triangular, gaussian, or any other function. The universe of 

discourse for the jth feature (Fj) is determined by finding the range [Fj^j^, i^jmax\-

This range is then divided into three overlapping sets. Once the membership functions 

have been decided for all m features, the fuzzified feature vector given by Equation 

5.4 is easily obtained. This fuzzification phase is illustratred in Figure 5.4. 

The next step is assigning member functions to the output of the neural network. 

The output is of dimension C. For each pattern class, all the training samples that 
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Figure 5.4: Input fuzzification phase. 

have some degree of membership to that class are determined. The mean and variance 

vectors for that class are determined from these training samples. Consider the nth 

class. Let there be Q training vectors that have some degree of membership to this 

class. On and Vn are the mean and standard deviation vectors respectively for the 

nth class. 

= ' [ 0 n i , 0 n 2 , - - - , 0 n m ]  w h e r e ,  (5.5) 

Oki = E 
z=l  ^  

For each input feature vector, its distance from all the C classes are determined. The 

distance of F^- from the nth class is calculated using (Pal and Mitral992) 

^in ~ 

m  
Z  l {F i j  -  (5.6) 

i=i 
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for n = 1,2,..., C. The membership values of each input feature to any one of the 

C classes can now be determined. The membership of F^- to the nth class is given by 

l^n{^i) = , . f ' (5-7) 

' + (1̂ ) 
forn = 1,2,..., C. The parameters and /e are constants that control the fuzziness. 

When the feature vector, F^, belongs just to the nth class, 

din = 0' (5.8) 

In the fuzziest case, the input feature vector will have some membership value to all 

the classes. 

Once the output membership functions have been decided, the neural network 

can be trained using the backpropagation algorithm discussed in Chapter 2. The net­

work is trained with input/output vector pairs. The input vector is 3m-dimensional, 

and the output vector is C-dimensional. The output vector gives the membership 

values of the input vector to each one of the classes. This technique is used to aid in 

the classification of HVAC faults. 

Fault Detection Scheme and Results 

The objective of the fault detection scheme is to detect and locate fault utiliz­

ing the minimum hardware. The proposed detection scheme has four temperature 

sensors. These are the input and output air temperature sensors, and the input and 

output water temperature sensors. At the outset, the intent was to classify all kinds 

of faults. Though every possible effort was made to this extent, it was realized to 
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be a very steap goal. This was owing to factors such as lack of necessary hardware, 

and the inability to simulate many of the fault scenarios. The goals of the fault 

detection scheme were narrowed down to detection of faults in the control variables: 

steam pressure, water flow rate, and fan speed (air flow rate). This still would be a 

powerful fault diagnostic system. 

The HVAC model described in Chapter 4 sounds the alarm when there is dis­

crepancy between the system output air temperature differential and that of the 

model. The system has to deviate by more than one degree Celsius, before the alarm 

is sounded. This takes into account modeling error and measurement noise. The two 

measurements that are available are the air temperature differential and the water 

temperature differential. The objective is to determine the control variable that is 

responsible for the error. It needs to be mentioned that different levels of deviations 

in the control variables can produce almost identical errors in the two measurements. 

Using the spline-neural model for the steam to hot water exchanger, the error in the 

water temperature differential (E(^W^)) can be calculated. The error in the output 

air temperature differential (E(^T)) is obtained using the model for the entire HVAC 

system. These error measurements were normalized by dividing these values by the 

respective expected temperature differentials. The normalized error variables ranged 

from zero to one. These normalized differentials seem to correlate better with the 

control variables, and are used to classify the error patterns. 

Numerous error scenarios in the control varibles were simulated using the differ­

ent models. The error in the output air temperature differential had to be greater 

than one degree Celsius. Further, it was assumed that the maximum error in the con­

trol variables could be half the step change. Thus, if the fan settings were in steps of 
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50 rpm, the maximum error would be 25 rpm. The error measurements belonged to 

three different classes. Overlap of classes was obvious. Thus, a fuzzy neural approach 

was justified. 

The input feature vector to the fuzzy neural network consisted of the normalized 

air and water temperature differential errors. Each error is fuzzified into three sets: 

low, medium and high. Triangular membership functions given by, 

® (^•^) 

< X < X2 

xq - x i  

X • - x o  

x i  - x o  
x  •  - x 2  

x i  - x 2  

x  - x i  

^2 
(5.10) 

are used to fuzzify the input feature vector. Here ojq = 1, = .5 andx2 = 1- The 

membership functions are given in Figure 5.5. 

For every input feature vector, the corresponding output fuzzy class vector is 

obtained using the technique in the section on fuzzy neural network. In equation 5.7, 

and fe were chosen to be one and three respectively. The classes for any input 

feature vector could take on values between zero and one. The overall schematic 

of the fault classification network is given in Figure 5.6. The neural network has 

two hidden layers with eight neurons each. This was arrived at after numerous trial 

and error runs. The input layer has six neurons corresponding to the fuzzified input 

feature vector. The output layer has three neurons corresponding to the three classes. 

It took 15,000 training cycles to bring the sum squared error below .01 as depicted 

in Figure 5.7. The learning rate was chosen to be 0.5. The network had sigmoidal 
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Figure 5.5: Triangular membership functions. 

activation functions and was trained using back-propagation. 

Fifty different simulated error samples were tested on the network. The error 

definitely belonged to a certain clciss if the membership function to that class wais 

greater than 0.5. Otherwise, the class with the greater membership value was picked. 

Of the fifty samples, forty one were diagnosed correctly. Of these, thirty three had 

membership values greater than 0.5 to one of the classes. Figure 5.8 shows the feature 

space that was classified. The fault diagnostics system was successful in detecting 

the faults, and pinpointing the responsible control variable. Degradation in the heat 

exchangers may produce similar fault signatures. But those parts are less likely to 

fail. 
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Figure 5.6: Fault classification network. 
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Figure 5.7: Training error. 
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Figure 5.8: Feature space. 
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CHAPTER 6. CONCLUSION 

The main goal of the research was to do a dissertation with practical applications. 

Working with a real-life HVAC system, has helped the author to understand the 

differences between working with real situations and simulated ones. The amount of 

time it takes to collect data is almost Hereculean. A dozen hours of collecting data 

would leave me with a handful of readings. The HVAC system is very sluggish. Like 

most practical systems, it is almost impossible for this system to replicate previous 

results. The number of times that readings had to be retaken was innumerable. The 

steam pressure could be fluctuating, or the fan speed was nowhere near where it 

should have been. After nine months of collecting data, it appeared that one could 

be doing this for ever. This leaves one with the impression that, it would be so 

much easier to simulate data. If the data generated from a model is used to generate 

another model, what do we stand to gain? Further, if a mathematical model exists, 

why spend endless time on a problem that has been solved? 

The industry seems to be so far behind what people in the academia consider 

to be state of the art technology. Most manufactures of control systems rely on the 

old, but almost reliable PID controllers. Adaptive control, and robust control are 

buzz words that are left on the book shelves. A lot of effort has to be made to bridge 

the gap between the researcher sitting at the computer, and the engineer on the 
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plant floor. Industries are not solely to be blamed for their inertia towards change. 

Whereas a researcher may be excited with the degree of complexity of his work, the 

industry is more concerned with the practicality of his work. 

The research objective was to do more than modeling with neural networks. 

Neural networks can definitely model HVAC systems. But the level of uncertainty 

when working with neural networks, weis a major concern. To develop a network that 

is easier to train was the main thrust of this research. Chapter 2 does an excellent 

analysis of behind the scenes operation of a neural network. For a functional approx­

imation problem, the neural network performs piecewise sigmoidal approximation. 

The network shifts the sigmoidal functions around in a manner, that can not be con­

trolled by the user. The network does not have any apriori information regarding the 

nature of the function. Thus, it does not know how many hidden layers, or neurons 

per layer are required. Though interpolation with sigmoidal functions can result in 

highly smooth functions, they have large supports and are not very flexible. It was 

shown in Chapter 2 that some activation functions can perform better than others in 

certain situations. The neural networks are being severely handicapped when they 

are being limited to a single activation function. This led to the proposed network, 

where each neuron in the network was responsible for a certain region of the func­

tional domain. Ideally, the neurons can take on any activation function. But this 

would make the modeling task computationally expensive, and extremely complex. 

Thus, the activation functions were picked to be lower order polynomials. The sup­

port of these activation functions are picked to be small enough to keep the error 

within tolerable limits. 

The proposed spline network is a piecewise functional approximation. To make 



www.manaraa.com

96 

it realizable, the network was reduced to a piecewise lower order polynomial approx­

imation. Initially, the functional approximation was going to be continuous but not 

smooth. Here smoothness is used in the context of possessing higher order derivatives. 

At that time, the only splines the author was aware of were mechanical splines used in 

drafting. It was coincidence that broadened his horizon to spline interpolation. Using 

spline techniques made it possible to generate smoother approximations. This dis­

sertation introduces Spline Network for functional approximations. The activation 

functions for this network are lower order polynomials called B-splines. B-splines 

could be linear, quadratic, or cubic. The support of these activation functions are 

picked by the user. This is definitely one of the greatest advantages that spline-neural 

networks have over conventional neural networks. In conventional neural networks, 

the support is picked during the long training phase. If the functions being approxi­

mated are monotonous, the activation functions for the spline-neural networks could 

be uniformly spaced. If there are lot of vaxiations, one could cluster a lot of acti­

vation functions with smaller supports in the region of high activity. Unlike neural 

networks, this network does not have any convergence problems. The weights of this 

network are picked by solving linear equations. Spline-neural networks are extremely 

easy to train. 

Chapter 4 illustrates the ability of spline networks to model the highly complex 

HVAC system. The HVAC system has been modeled with great accuracy. Three 

different models were generated. The overall system model is used to sound the 

alarm. It informs the user of discrepancy in the system operation. The model of 

the steam to hot water heat exchanger gives the difference in temperatures between 

the outgoing and incoming water streams. If there is error in water temperature 
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differential, it indicates a fault in steam flow, water flow, or the heat exchanger. The 

model of the hot water to air heat exchanger gives the air temperature diflFerential 

for the actual system water temperature differential. This would indicate whether 

there actually is an error in this part of the system. A lot of refinements can be 

made to this model. The HVAC system did not have the facility to measure so many 

parameters. Further, it was not possible to model the different fault scenarios. Thus, 

due to hardware limitations, this model is not complete. The model can be made 

to include transient characteristics of the system. Spline networks can also be used 

to model non-linear dynamical sytems. This is definitely an area for future research. 

The working of neural networks and spline networks were compared in Chapter 4. For 

one-dimensional data, the spline neural network training was more than two hundred 

times faster than training the artificial neural network. For higher dimensional data, 

the time taken increases almost exponentially. The time taken to get the required 

neural network structure could be in the order of weeks. It was also found that there 

was not enough input/output data for the neural network to learn the system model. 

Spline networks have definitely proven their ability to model complex systems, that 

exhibit smooth functional characteristics. 

The working model sounds the alarm when there is an intolerable error in the 

outlet air temperature. The next step is to detect the guilty system component. 

A powerful fault detection scheme should harness all the the information available, 

be it mathematical, numerical or linguistic. Since there are no mathematical mod­

els to work with, fuzzy neural networks are an ideal choice. Neural networks have 

established their identity as pattern classifiers. But traditional neural network pat­

tern classifiers assign features to a single class. In reality, they may belong to more. 
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For this reason, the philosophy of fuzzy logic is exploited in fuzzy neural networks. 

The input features are trained to belong to naore than one output class. Chapter 

5 illustrates fuzzy-neural techniques in fault classification. Due to lack of time and 

necessary hardware, it was not possible to identify all the faults. Faults in steam 

pressure, fan speed, and water flow rate were classified with about eighty percent 

accuracy. 

The objective of this research was not to attack conventional neural networks, but 

is to look at neural networks from a different perspective, in an effort to overcome 

some of the drawbacks of neural networks. The vision of a piecewise functional 

neural network led to the spline network. The spline network could be an excellent 

alternative to neural networks for certain functional approximation problems. The 

areas of functional approximation problems, where spline networks can do a better 

job is yet to be determined. But, it has been proved that for noise-free and slowly 

varying functions, spline networks could do a commendable job. For such functions, 

spline network training is faster and easier than training neural networks. 
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